If $u,v,w$ are noncoplanar vectors and p, q are real numbers, then the equality $[3u,pv,pw]−[pv,w,qu]−[2w,qv,qu]=0$ holds for(A) exactly one value of (p, q)(B) exactly two values of (p, q)(C) more than two but not all values of (p, q)(D) all values of (p, q)