We have,
(tan−1x)2+(cot−1x)2=85π2
⇒(tan−1x)2+(cot−1x)2+2tan−1xcot−1x−2tan−1xcot−1x=85π2
⇒(tan−1x+cot−1x)2−2tan−1xcot−1x=85π2
⇒(2π)2−2tan−1xcot−1x=85π2
⇒4π2−2tan−1xcot−1x=85π2
⇒4π2−85π2=2tan−1xcot−1x
⇒82π2−5π2=2tan−1x(π−tan−1x)
⇒8−3π2=2πtan−1x−2(tan−1x)2
⇒2(tan−1x)2−2πtan−1x−83π2=0
tan−1x=2×22π±4π2+4×2×83π2
tan−1x=2×22π±4π2+3π2
tan−1x=42π±7π2
tan−1x=42π±7π
Now,
x=tan42π±7π
It is quadratic equation